Перевод: со всех языков на английский

с английского на все языки

Henry's law

  • 1 Henry'sches Gesetz

    n < phys> ■ Henry's law

    German-english technical dictionary > Henry'sches Gesetz

  • 2 Henry Blackstone's English Common Pleas Reports

    Law: H.Bl.

    Универсальный русско-английский словарь > Henry Blackstone's English Common Pleas Reports

  • 3 Henry Blackstone's Reports

    Law: Bl.H.

    Универсальный русско-английский словарь > Henry Blackstone's Reports

  • 4 Henry County Sheriff's Office

    Law: HCSO

    Универсальный русско-английский словарь > Henry County Sheriff's Office

  • 5 Henry

    1) Law: Hen.
    2) Polymers: H

    Универсальный русско-английский словарь > Henry

  • 6 henry

    1) Law: Hen.
    2) Polymers: H

    Универсальный русско-английский словарь > henry

  • 7 legge di Henry

    [CHIM, FIS]

    Dizionario chimica Italiano-Inglese > legge di Henry

  • 8 Ford, Henry

    [br]
    b. 30 July 1863 Dearborn, Michigan, USA
    d. 7 April 1947 Dearborn, Michigan, USA
    [br]
    American pioneer motor-car maker and developer of mass-production methods.
    [br]
    He was the son of an Irish immigrant farmer, William Ford, and the oldest son to survive of Mary Litogot; his mother died in 1876 with the birth of her sixth child. He went to the village school, and at the age of 16 he was apprenticed to Flower brothers' machine shop and then at the Drydock \& Engineering Works in Detroit. In 1882 he left to return to the family farm and spent some time working with a 1 1/2 hp steam engine doing odd jobs for the farming community at $3 per day. He was then employed as a demonstrator for Westinghouse steam engines. He met Clara Jane Bryant at New Year 1885 and they were married on 11 April 1888. Their only child, Edsel Bryant Ford, was born on 6 November 1893.
    At that time Henry worked on steam engine repairs for the Edison Illuminating Company, where he became Chief Engineer. He became one of a group working to develop a "horseless carriage" in 1896 and in June completed his first vehicle, a "quadri cycle" with a two-cylinder engine. It was built in a brick shed, which had to be partially demolished to get the carriage out.
    Ford became involved in motor racing, at which he was more successful than he was in starting a car-manufacturing company. Several early ventures failed, until the Ford Motor Company of 1903. By October 1908 they had started with production of the Model T. The first, of which over 15 million were built up to the end of its production in May 1927, came out with bought-out steel stampings and a planetary gearbox, and had a one-piece four-cylinder block with a bolt-on head. This was one of the most successful models built by Ford or any other motor manufacturer in the life of the motor car.
    Interchangeability of components was an important element in Ford's philosophy. Ford was a pioneer in the use of vanadium steel for engine components. He adopted the principles of Frederick Taylor, the pioneer of time-and-motion study, and installed the world's first moving assembly line for the production of magnetos, started in 1913. He installed blast furnaces at the factory to make his own steel, and he also promoted research and the cultivation of the soya bean, from which a plastic was derived.
    In October 1913 he introduced the "Five Dollar Day", almost doubling the normal rate of pay. This was a profit-sharing scheme for his employees and contained an element of a reward for good behaviour. About this time he initiated work on an agricultural tractor, the "Fordson" made by a separate company, the directors of which were Henry and his son Edsel.
    In 1915 he chartered the Oscar II, a "peace ship", and with fifty-five delegates sailed for Europe a week before Christmas, docking at Oslo. Their objective was to appeal to all European Heads of State to stop the war. He had hoped to persuade manufacturers to replace armaments with tractors in their production programmes. In the event, Ford took to his bed in the hotel with a chill, stayed there for five days and then sailed for New York and home. He did, however, continue to finance the peace activists who remained in Europe. Back in America, he stood for election to the US Senate but was defeated. He was probably the father of John Dahlinger, illegitimate son of Evangeline Dahlinger, a stenographer employed by the firm and on whom he lavished gifts of cars, clothes and properties. He became the owner of a weekly newspaper, the Dearborn Independent, which became the medium for the expression of many of his more unorthodox ideas. He was involved in a lawsuit with the Chicago Tribune in 1919, during which he was cross-examined on his knowledge of American history: he is reputed to have said "History is bunk". What he actually said was, "History is bunk as it is taught in schools", a very different comment. The lawyers who thus made a fool of him would have been surprised if they could have foreseen the force and energy that their actions were to release. For years Ford employed a team of specialists to scour America and Europe for furniture, artefacts and relics of all kinds, illustrating various aspects of history. Starting with the Wayside Inn from South Sudbury, Massachusetts, buildings were bought, dismantled and moved, to be reconstructed in Greenfield Village, near Dearborn. The courthouse where Abraham Lincoln had practised law and the Ohio bicycle shop where the Wright brothers built their first primitive aeroplane were added to the farmhouse where the proprietor, Henry Ford, had been born. Replicas were made of Independence Hall, Congress Hall and the old City Hall in Philadelphia, and even a reconstruction of Edison's Menlo Park laboratory was installed. The Henry Ford museum was officially opened on 21 October 1929, on the fiftieth anniversary of Edison's invention of the incandescent bulb, but it continued to be a primary preoccupation of the great American car maker until his death.
    Henry Ford was also responsible for a number of aeronautical developments at the Ford Airport at Dearborn. He introduced the first use of radio to guide a commercial aircraft, the first regular airmail service in the United States. He also manufactured the country's first all-metal multi-engined plane, the Ford Tri-Motor.
    Edsel became President of the Ford Motor Company on his father's resignation from that position on 30 December 1918. Following the end of production in May 1927 of the Model T, the replacement Model A was not in production for another six months. During this period Henry Ford, though officially retired from the presidency of the company, repeatedly interfered and countermanded the orders of his son, ostensibly the man in charge. Edsel, who died of stomach cancer at his home at Grosse Point, Detroit, on 26 May 1943, was the father of Henry Ford II. Henry Ford died at his home, "Fair Lane", four years after his son's death.
    [br]
    Bibliography
    1922, with S.Crowther, My Life and Work, London: Heinemann.
    Further Reading
    R.Lacey, 1986, Ford, the Men and the Machine, London: Heinemann. W.C.Richards, 1948, The Last Billionaire, Henry Ford, New York: Charles Scribner.
    IMcN

    Biographical history of technology > Ford, Henry

  • 9 Fourdrinier, Henry

    SUBJECT AREA: Paper and printing
    [br]
    b. 11 February 1766 London, England
    d. 3 September 1854 Mavesyn Ridware, near Rugeley, Staffordshire, England
    [br]
    English pioneer of the papermaking machine.
    [br]
    Fourdrinier's father was a paper manufacturer and stationer of London, from a family of French Protestant origin. Henry took up the same trade and, with his brother Sealy (d. 1847), devoted many years to developing the papermaking machine. Their first patent was taken out in 1801, but success was still far off. A machine for making paper had been invented a few years previously by Nicolas Robert at the Didot's mill at Essonnes, south of Paris. Robert quarrelled with the Didots, who then contacted their brother-in-law in England, John Gamble, in an attempt to raise capital for a larger machine. Gamble and the Fourdriniers called in the engineer Bryan Donkin, and between them they patented a much improved machine in 1807. In the new machine, the paper pulp flowed on to a moving continuous woven wire screen and was then squeezed between rollers to remove much of the water. The paper thus formed was transferred to a felt blanket and passed through a second press to remove more water, before being wound while still wet on to a drum. For the first time, a continuous sheet of paper could be made. Other inventors soon made further improvements: in 1817 John Dickinson obtained a patent for sizing baths to improve the surface of the paper; while in 1820 Thomas Crompton patented a steam-heated drum round which the paper was passed to speed up the drying process. The development cost of £60,000 bankrupted the brothers. Although Parliament extended the patent for fourteen years, and the machine was widely adopted, they never reaped much profit from it. Tsar Alexander of Russia became interested in the papermaking machine while on a visit to England in 1814 and promised Henry Fourdrinier £700 per year for ten years for super-intending the erection of two machines in Russia; Henry carried out the work, but he received no payment. At the age of 72 he travelled to St Petersburg to seek recompense from the Tsar's successor Nicholas I, but to no avail. Eventually, on a motion in the House of Commons, the British Government awarded Fourdrinier a payment of £7,000. The paper trade, sensing the inadequacy of this sum, augmented it with a further sum which they subscribed so that an annuity could be purchased for Henry, then the only surviving brother, and his two daughters, to enable them to live in modest comfort. From its invention in ancient China (see Cai Lun), its appearance in the Middle Ages in Europe and through the first three and a half centuries of printing, every sheet of paper had to made by hand. The daily output of a hand-made paper mill was only 60–100 lb (27–45 kg), whereas the new machine increased that tenfold. Even higher speeds were achieved, with corresponding reductions in cost; the old mills could not possibly have kept pace with the new mechanical printing presses. The Fourdrinier machine was thus an essential element in the technological developments that brought about the revolution in the production of reading matter of all kinds during the nineteenth century. The high-speed, giant paper-making machines of the late twentieth century work on the same principle as the Fourdrinier of 1807.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Paper-making Machine, Oxford: Pergamon Press. D.Hunter, 1947, Papermaking. The History and Technique of an Ancient Craft, London.
    LRD

    Biographical history of technology > Fourdrinier, Henry

  • 10 hukum Faraday-Henry

    Faraday-Henry law

    Indonesia-Inggris kamus > hukum Faraday-Henry

  • 11 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 12 Bissell, George Henry

    [br]
    b. 8 November 1821 Hanover, New Hampshire, USA
    d. 19 November 1884 New York, USA
    [br]
    American promoter of the petroleum industry.
    [br]
    Bissell first pursued a career in education, as Professor of Languages at the University of Norwich, Vermont, and then as Superintendent of Schools in New Orleans. After dabbling in journalism, he turned to law and was admitted to the Bar in New York City in 1853. The following year he was deeply impressed by the picture of a derrick on the label on a bottle of brine from Samuel M.Kier's brine well. Bissell saw in it a new possibility of producing petroleum and, with Jonathan G.Elveleth, formed the world's first oil company, the Pennsylvania Rock Oil Company, on 30 December 1854. The Company obtained a sample of oil at Hibbard Farm, Titusville, Pennsylvania, and sent it for examination to Benjamin Silliman Jr, Professor of Chemistry at Yale University. He reported on 16 April 1855 that by simple means nearly all the oil could be converted into useful substances. Bissell acted on this and began drilling near Oil Creek, Pennsylvania. On 27 August 1859 his contractor struck oil at 60 ft (18 m). This date is usually taken as the starting point of the modern oil industry, even though oil had been obtained two years earlier in Europe by drilling near Hannover and at Ploesti in Romania. Bissell returned to New York in 1863 and spent the rest of his life promoting enterprises connected with the oil industry.
    [br]
    Further Reading
    Obituary, 1884, New York Herald, 20 November.
    W.B.Kaempffert, 1924, A Popular History of American Inventions, New York. I.M.Tarbell, 1904, History of the Standard Oil Company, New York.
    LRD

    Biographical history of technology > Bissell, George Henry

  • 13 Dallmeyer, John Henry

    [br]
    b. 6 September 1830 Loxten, Westphalia, Germany
    d. 30 December 1883 at sea off New Zealand
    [br]
    German/English manufacturing optician and, lens designer.
    [br]
    Son-in-law of the great optician Andrew Ross, for whom he worked, Dallmeyer founded his own business in 1860, in which year he introduced his triple achromat lens, which combined the features of a flat field, high definition, a wide angle of view and straight marginal lines, eliminating both the barrel distortion given by the single achromat and the pincushion distortion of the orthochromatic lens. In 1866 he patented the Rectilinear lens, a double achromat pattern which remained in use for over half a century. His portrait lenses, based on the Petzval pattern, were widely used throughout the nineteenth century in studios around the world. Ill health forced Dallmeyer's retirement from business in 1882.
    BC

    Biographical history of technology > Dallmeyer, John Henry

  • 14 закон Генри

    Русско-английский технический словарь > закон Генри

  • 15 закон Генрі

    Українсько-англійський словник з аналітичної хімії > закон Генрі

  • 16 массовый закон Генри

    Русско-английский физический словарь > массовый закон Генри

  • 17 объёмный закон Генри

    Русско-английский физический словарь > объёмный закон Генри

  • 18 henrijev zakon

    • henry's law

    Serbian-English dictionary > henrijev zakon

  • 19 zapremina gasa koji se apsorbu

    • henry's law

    Serbian-English dictionary > zapremina gasa koji se apsorbu

  • 20 закон Генри

    Русско-английский словарь по химии > закон Генри

См. также в других словарях:

  • Henry's law — may sometimes refer to Lenz s Law In chemistry, Henry s law is one of the gas laws, formulated by William Henry. It states that:: At a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly… …   Wikipedia

  • Henry's law — Thermodynam. the principle that at a constant temperature the concentration of a gas dissolved in a fluid with which it does not combine chemically is almost directly proportional to the partial pressure of the gas at the surface of the fluid. Cf …   Universalium

  • Henry's law — noun (chemistry) law formulated by the English chemist William Henry; the amount of a gas that will be absorbed by water increases as the gas pressure increases • Topics: ↑chemistry, ↑chemical science • Hypernyms: ↑law, ↑law of nature …   Useful english dictionary

  • Henry's law — Hen·ry s law (henґrēz) [William Henry, English chemist, 1774–1836] see under law …   Medical dictionary

  • Henry's law — noun Chemistry a law stating that the mass of a dissolved gas in a given volume of solvent at equilibrium is proportional to the partial pressure of the gas. Origin C19: named after the English chemist William Henry …   English new terms dictionary

  • Henry's law — /hɛnriz ˈlɔ/ (say henreez law) noun the principle that the mass of a gas dissolved by a given volume of liquid at constant temperature is directly proportional to the partial pressure of the gas. {named after William Henry, 1774–1836, English… …  

  • Henry's law — the solubility of a gas in a liquid solution at constant temperature is proportional to the partial pressure of the gas above the solution …   Medical dictionary

  • Henry — is an English male given name and a surname, derived from Heinrich of Germanic origin. Equivalents in other languages are Henrik (Scandinavian), Eanruig (Scots Gaelic), Enrico (Italian), Henri (French), Enrique (Spanish), Henrik (Hungarian),… …   Wikipedia

  • Henry , William — (1774–1836) British physician and chemist Henry s father, Thomas Henry, was a manufacturing chemist in Manchester and an analytical chemist of some repute. Initially qualifying as a physician from Edinburgh University, Henry practiced for five… …   Scientists

  • law of nature — noun a generalization that describes recurring facts or events in nature (Freq. 3) the laws of thermodynamics • Syn: ↑law • Hypernyms: ↑concept, ↑conception, ↑construct • …   Useful english dictionary

  • Henry, William — ▪ British chemist born Dec. 12, 1775, Manchester died Sept. 2, 1836, Pendlebury, Lancashire, Eng.  English physician and chemist who in 1803 proposed what is now called Henry s law, which states that the amount of a gas absorbed by a liquid is in …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»